Konrad Hinsen's Blog

On HDF5 and the future of data management

Yesterday a blog post by Cyrille Rossant entitled “Moving away from HDF5” caught my eye. My own tendency at the moment is to use HDF5 more and more, so I was interested in why someone else would want to do the opposite. Here is my conclusion after reading his post, plus some ideas about where scientific data management is or should be heading in my opinion.

From facts to narratives

A recurrent theme in computational science (and elsewhere) is the need to combine machine-readable information (which in the following I will call “facts” for simplicity) with a narrative for the benefit of human readers. The most obvious situation is a scientific publication, which is essentially a narrative explaining the context and motivation for a study, the work that was undertaken, the results that were observed, and conclusions drawn from these results. For a scientific study that made use of computation (which is almost all of today’s research work), the narrative refers to various computational facts, in particular machine-readable input data, program code, and computed results.

The lifecycle of digital scientific knowledge

Like all information with a complex structure, scientific knowledge evolves over time. New ideas turn into validated models, and are ultimately integrated into a coherent body of knowledge defined by the concensus of a scientific community. In this essay, I explore how this process is affected by the ever increasing use of computers in scientific research. More precisely, I look at “digital scientific knowledge”, by which I mean scientific knowledge that is processed using computers. This includes both software and digital datasets. For simplicity, I will concentrate on software, but much of the reasoning applies to datasets as well, if only because the precise meaning of non-trivial datasets is often defined by the software that treats them.

A rant about software deployment in 2015

We all know that software deployment in a research environment can be a pain, but knowing this as a fact is not quite the same as experiencing it in reality. Over the last days, I spent way more time that I would have imagined on what sounds like a simple task: installing a scientific application written in Python on a Linux machine for use by a group of students in a training session. Here is an outline of the difficulties, in the hope that it will (1) help others who face similar problems and (2) contributes a little bit to improving the situation.