Posts tagged scientific software
An open letter to software engineers criticizing Neil Ferguson's epidemics simulation code
Dear software engineers,
Many of you were horrified at the sight of the C++ code that Neil Ferguson and his team wrote to simulate the spread of epidemics. I feel with you. The only reason why I am less horrified than you is that I have seen a lot of similar-looking code before. It is in fact quite common in scientific computing, in particular in research projects that have been running for many years. But like you, I don't have much trust in that code being a faithful and trustworthy implementation of the epidemiological models that it is supposed to implement, and I don't want to defend bad code in science.
Wanted: a hierarchically modular software architecture
In his 1962 classic "The Architecture of Complexity", Herbert Simon described the hierarchical structure found in many complex systems, both natural and human-made. But even though complexity is recognized as a major issue in software development today, the architecture described by Simon is not common in software, and in fact seems unsupported by today's software development and deployment tools.
Emacs as a malleable system
Malleable systems are software systems that are designed to be modified and extended by their users, eliminating the usually strict borderline between developers and users. Making scientific software more malleable is a goal that I have been pursuing for 25 years, starting with a shift from Fortran to Python as my main programming language, and a simultaneous shift from writing programs to writing toolkits, such as my Molecular Modelling Toolkit first published in 1997. Therefore I was pleased to discover the Malleable Systems Collective, which has just published a post in which I examine what is probably the most successful malleable system in the history of software: Emacs. If you care about users having more influence on their software, check out their site!
Knowledge distillation in computer-aided research
There is an important and ubiquitous process in scientific research that scientists never seem to talk about. There isn't even a word for it, as far as I now, so I'll introduce my own: I'll call it knowledge distillation.
In today's scientific practice, there are two main variants of this process, one for individual research studies and one for managing the collective knowledge of a discipline. I'll briefly present both of them, before coming to the main point of this post, which is the integration of digital knowledge, and in particular software, into the knowledge distillation process.
Literate computational science
Since the dawn of computer programming, software developers have been aware of the rapidly growing complexity of code as its size increases. Keeping in mind all the details in a few hundred lines of code is not trivial, and understanding someone else's code is even more difficult because many higher-level decisions about algorithms and data structures are not visible unless the authors have carefully documented them and keep those comments up to date.
Scientific software is different from lab equipment
My most recent paper submission (preprint available) is about improving the verifiability of computer-aided research, and contains many references to the related subject of reproducibility. A reviewer asked the same question about all these references: isn't this the same as for experiments done with lab equipment? Is software worse? I think the answers are of general interest, so here they are.
What can we do to check scientific computation more effectively?
It is widely recognized by now that software is an important ingredient to modern scientific research. If we want to check that published results are valid, and if we want to build on our colleagues' published work, we must have access to the software and data that were used in the computations. The latest high-impact statement along these lines is a Nature editorial that argues that with any manuscript submission, authors should also submit the data and the software for review. I am all for that, and I hope that more journals will follow.
There is no such thing as software development
It's hard to find an aspect of modern life that is not influenced in some way by software. Some of it is very visible, for example the Web browser I start on my computer. Other software is completely invisible, such as the software controlling my car's diesel engine. Some software is safety critical, for example flight control software in airplanes. Other software is used in a much more futile way, such as playing games. I could go on listing characteristics in which different software packages differ, but I will leave it at that - I don't really expect anyone to disagree about the ubiquity and diversity of software in our increasingly digital world.
Which mistakes do we actually make in scientific code?
Over the last few years, I have repeated a little experiment: Have two scientists, or two teams of scientists, write code for the same task, described in plain English as it would appear in a paper, and then compare the results produced by the two programs. Each person/team was asked to do a maximum amount of verification and testing before comparing to the other person's/team's work.
Tags: computational science, computer-aided research, emacs, mmtk, mobile computing, programming, proteins, python, rants, reproducible research, science, scientific computing, scientific software, social networks, software, source code repositories, sustainable software
By month: 2023-11, 2023-10, 2022-08, 2021-06, 2021-01, 2020-12, 2020-11, 2020-07, 2020-05, 2020-04, 2020-02, 2019-12, 2019-11, 2019-10, 2019-05, 2019-04, 2019-02, 2018-12, 2018-10, 2018-07, 2018-05, 2018-04, 2018-03, 2017-12, 2017-11, 2017-09, 2017-05, 2017-04, 2017-01, 2016-05, 2016-03, 2016-01, 2015-12, 2015-11, 2015-09, 2015-07, 2015-06, 2015-04, 2015-01, 2014-12, 2014-09, 2014-08, 2014-07, 2014-05, 2014-01, 2013-11, 2013-09, 2013-08, 2013-06, 2013-05, 2013-04, 2012-11, 2012-09, 2012-05, 2012-04, 2012-03, 2012-02, 2011-11, 2011-08, 2011-06, 2011-05, 2011-01, 2010-07, 2010-01, 2009-09, 2009-08, 2009-06, 2009-05, 2009-04