Recent posts
A rant about mail clients
From an information processing point of view, an e-mail message is not very different from lots of other pieces of data. It's a sequence of bytes respecting a specific format (defined by a handful of standards) to allow its unambiguous interpretation by various programs in the processing chain. An e-mail message can perfectly well be stored in a file and in fact most e-mail clients permit saving a message to a file. Unfortunately, the number of e-mail clients able to open and display correctly such a file is already much smaller. But when it comes to collections of messages, information processing freedom ends completely.
Pretty much every mail client's point of view is that all of a user's mail is stored in some database, and that it (the client) is free to handle this database in whatever way it likes. The user's only access to the messages is the mail client. The one and only. The only exception is server-based mail databases handled via the IMAP protocol, where multiple clients can work with a common database. If you don't use IMAP, you have no control over how and where your mail is stored, who has access to it, etc.
What I'd like to do is manage mail just like I manage other files. A mailbox should just be a directory containing messages, one per file. Mailboxes could be stored anywhere in the file system. Mailboxes could be shared through the file system, and backed up via the file system. They could be grouped with whatever other information in whatever way that suits me. I would double-click on a message to view it, or double-click on a mailbox directory to view a summary, sorted in the way I like it. Or I would use command-line tools to work on a message or a mailbox. I'd pick the best tool for each job, just like I do when working with any other kind of file.
Why all that isn't possible remains a mystery to me. The technology has been around for decades. The good old Maildir format would be just fine for storing mailboxes anywhere in the file system, as would the even more venerable mbox format. But even mail clients that use mbox or Maildir internally insist that all such mailboxes must reside in a single master directory. Moreover, they won't let me open a mailbox from outside, I have to run the mail client and work through its hierarchical presentation of mailboxes to get to my destination.
Before I get inundated by comments pointing out that mail client X has feature Y from the list above: Yes, I know, there are small exceptions here and there. But unless I have the complete freedom to put my mail where I want it, the isolated feature won't do me much good. If someone knows of a mail client that has all the features I am asking for, plus the features we all expect from a modern mail client, then please do leave a comment!
EuroSciPy 2011
The two keynote talks were particularly inspiring. On Saturday, Marian Petre reported on her studies of how people in general and scientists in particular develop software. The first part of her presentation was about how "expert" design and implement software, the definition of an expert being someone who produces software that actually works, is finished on time, and doesn't exceed the planned budget. The second part was about the particularities of software development in science. But perhaps the most memorable quote of the keynote was Marian's reply to a question from the audience of how to deal with unreasonable decisions coming from technically less competent managers. She recommended to learn how to manage management - a phrase that I heard repeated several times during the discussions along the conference.
The Sunday keynote was given by Fernando Perez. As was to be expected, IPython was his number one topic and there was a lot of new stuff to show off. I won't mention all the new features in the recently released version 0.11 because they are already discussed in detail elsewhere. What I find even more exciting is the new Web notebook interface, available only directly from the development site at github. A notebook is an editable trace of an interactive session that can be edited, saved, stored in a repository, or shared with others. It contains inputs and outputs of all commands. Inputs are cells that can consist of more than one line. Outputs are by default what Python prints to the terminal, but IPython provides a mechanism for displaying specific types of objects in a special way. This allows to show images (in particular plots) inline, but also to turn SymPy expressions into mathematical formulas typeset in LaTeX.
A more alarming aspect of Fernando's keynote was his statistical analysis of contributions to the major scientific libraries of the Python universe. In summary, the central packages are maintained by a grand total of about 25 people in their spare time. This observation caused a lot of debate, centered around how to encourage more people to contribute to this fundamental work.
Among the other presentations, as usual mostly of high quality, the ones that impressed me most were Andrew Straw's presentation of ROS, the Robot Operating System, Chris Myers' presentation about SloppyCell, and Yann Le Du's talk about large-scale machine learning running on a home-made GPU cluster. Not to forget the numerous posters with lots of more interesting stuff.
For the first time, EuroSciPy was complemented by domain-specific satellite meetings. I attended PyPhy, the Python in Physics meeting. Physicists are traditionally rather slow in accepting new technology, but the meeting showed that a lot of high-quality research is based on Python tools today, and that Python has also found its way into physics education at various universities.
Finally, conferences are good also because of what you learn during discussions with other participants. During EuroSciPy, I discovered a new scientific journal called Open Research Computation , which is all about software for scientific research. Scientific software developers regularly complain about the lack of visibility and recognition that their work receives by the scientific community and in particular by evaluation and grant attribution committees. A dedicated journal might just be what we need to improve the situation. I hope this will be a success.
Executable Papers
The term "executable papers" stands for the expected next revolution in scientific publishing. The move from printed journals to electronic on-line journals (or a combination of both) has changed little for authors and readers. It is the libraries that have seen the largest impact because they now do little more than paying subscription fees. Readers obtain papers as PDF files directly from the publishers' Web sites. The one change that does matter to scientists is that most journals now propose the distribute "supplementary material" in addition to the main paper. This can in principle be any kind of file, in practice it is mostly used for additional explanations, images, and tables, i.e. to keep the main paper shorter. Occasionally there are also videos, a first step towards exploring the new possibilities opened up by electronic distribution. The step to executable papers is a much bigger one: the goal is to integrate computer-readable data and executable program code together with the text part of a paper. The goals are a richer reader experience (e.g. interactive visualizations), verifiability of results by both referees and readers (by re-running part of the computations described in the paper), and re-use of data and code in later work by the same or other authors. There is some overlap in these goals with the "reproducible research" movement, whose goal is to make computational research reproducible by providing tools and methods that permit to store a trace of everything that entered into some computational procedure (input data, program code, description of the computing environment) such that someone else (or even the original author a month later) can re-run everything and obtain the same results. The new aspect in executable papers is the packaging and distribution of everything, as well as the handling of bibliographic references.
The proposals' variety mostly reflected the different background of the presenters. A mathematician documenting proofs obviously has different needs than an astrophysicist simulating a supernova on a supercomputer. Unfortunately this important aspect was never explicitly discussed. Most presenters did not even mention their field of work, much less what it implies in terms of data handling. This was probably due to the enormous time pressure; 15 to 20 minutes for a presentation plus demonstration of a complex tool was clearly not enough.
The proposals could roughly be grouped into three categories:
- Web-based tools that permit the author to compose his executable paper by supplying data, code, and text, and permit the reviewer and reader to consult this material and re-run computations.
- Systems for preserving the author's computational environment in order to permit reviewers and readers to use the author's software with little effort and without any security risks.
- Semantic markup systems that make parts of the written text interpretable by a computer for various kinds of processing
Some proposals covered two of these categories but with a clear emphasis on one of them. For the details of each propsal, see the ICCS proceedings which are freely available.
While it was interesting to see all the different ideas presented, my main impression of the Executable Paper Workshop is that of a missed opportunity. Having all those people who had thought long and hard about the various issues in one room for two days would have been a unique occasion to make progress towards better tools for the future. In fact, none of the solutions presented cover the needs of the all the domains of computational science. They make assumptions about the nature of the data and the code that are not universally valid. One or two hours of discussion might have helped a lot to improve everyone's tools.
The implementation of my own proposal, which addresses the questions of how to store code and data in a flexible, efficient, and future-proof way, is available here. It contains a multi-platform binary (MacOS, Linux, Windows, all on the x86 platform) and requires version 6 of the Java Runtime Environment. The source code is also included, but there is no build system at the moment (I use a collection of scripts that have my home-directory hard-coded in lots of places). There is, however, a tutorial. Feedback is welcome!
Text input on mobile devices
I have been using mobile (pocket size) computers for about 15 years, starting with the Palm Pilot. Currently I use an Android smartphone (Samsung Galaxy S). While mobile devices are mostly used for consulting rather than for entering information, text entry has always been a hot topic of debate.
Apple's Newton Messagepad, probably the first mobile computing device in the modern sense, pursued the ambitious goal of handwriting recognition. It was both an impressive technical achievement and a practical failure. I don't think anyone ever managed to use the Newton's handwriting recognition satisfactorily in daily life.
The Palm Pilot had a more modest but also more achievable goal: its Graffiti technology was based on single letter recognition with simplified letter shapes. It took a while to become fluent with Graffiti, but many people managed and I don't remember anyone complainig about. the nearning curve.
I don't remember when I first saw a miniature QWERTY keyboard on the screen of a mobile device, but it may well have been on one of the first iPhones. I was definitely not enthusiastic about it. The keys are much too small for touch-typing, and the layout was already a bad choice for desktop computer keyboards. The only argument in its favor is familiarity, but is that a good enough reason to cripple oneself for a long time to come?
When I got my Android phone, I was rapidly confronted with this issue in practice. Samsung left me the choice between the standard keyboard and Swype. Both had the same problem: too small keys for my fingers. I turned to the Android market and found many more QWERTY keyboards. And... Graffiti, my old friend from my Palm days. What a relief!
Of course, my phone is not a Palm. The Biggest difference is that the Palm had a stylus whereas today's smartphones are meant to be manipulated withthe fingers. But Graffiti works surprisingly well without a stylus. I find that I can write about equally well wïth the index or the thumb. Graffiti definitely is a good choice for Android, especially for Palm veterans.
Recently I discovered another alternative input and I like it enough that I might end up preferring it over Graffiti. It's called MessagEase and it consists of a 3x3 grid of comfortably large keys that display the 9 most frequent characters. The remaining characters, plus punctuation etc., is available by drawing lines outward from the center of a key. The technique doesn't require much time to master, but writing fluently requires a lot of practice because the layout needs to be memorized.
I started using MessagEase about two weeks ago and have reached about the same speed I ge with Graffiti. I wrote this whole article with MessagEase as a real-life exercise. Time will tell if I actually get faster than with Graffiti, but MessagEase definitely is a serious candidate for mobile texting in the post-QWERTY era. If you have an Android phone or an iPhone, give it a try.
Bye bye iCal, welcome org-mode
Being unhappy with a tool for an important task implies looking for better options, but I didn't find anything that I liked. Until one day I discovered, mostly by accident, the org-mode package that has been distributed with Emacs for a while. org-mode is one of those pieces of software that is so powerful that it is difficult to describe to someone who has never used it. Basically, org-mode uses plain text files with a special lightweight markup syntax for things like todo items or time stamps (but there is a lot more), and then provides sophisticated and very configurable functions for working with this data. It can be used for keeping agendas, todo lists, journals, simple databases such as bookmark lists, spreadsheets, and much more. Most importantly, all of these can coexist in a single text file if you want, and the contents of this file can be structured in any way you like. You can even add pieces of executable code and thus use org-mode for literal programming, but that's a topic for another post.
To be more concrete, my personal information database in org-mode consists of several files at the top level:
work.org
for organizing my workday, home.org
for tasks and appointments related to private life, research.org
for notes about research projects, programming.org
for notes (mostly bookmarks) about software development, etc. Inside my work.org
, there is a section on research projects, one on teaching, one on my editorial work for CiSE, one for refereeing, etc. Inside each of these sections, there are agenda entries (seminars, meetings, courses etc.) and todo entries with three priority levels and optional deadlines. Any of them can be accompanied by notes of any kind, including links, references to files on my disk, and even executable shell commands. There is no limit to what you store there.In October 2010 I started the transition from iCal to org-mode. Initially I entered all data twice, to make sure I could continue to rely on iCal. After a week I was confident enough to enter everything just once, using org-mode. I then transferred all agenda items for 2011 to org-mode and decided to stop using iCal on Januray 1, 2011. That day has arrived, and the iCal icon has disappeared from my dock. Without any regrets.
Conclusion: If you need a powerful PIM system and you don't fear Emacs, have a look at org-mode.
The future of Python
First of all, my intentions behind the keynote were
- Encourage scientists to look at new tools and developments that I believe to be important in the near future (Python 3, Cython) and at others that might become important to scientific applications (JIT compilers, alternative implementations).
- Make computational scientists think about future commodity hardware (which is what we use most of the time) and its implications for programming, in particular the generalization of massively parallel computing.
- Show that easy-to-use parallel programming paradigms, in particular deterministic ones, exist today. Computational scientists need to realize that MPI and OpenMP are not the last word on parallel programming.
- Make my ideas concrete by showing how they could be implemented in Python.
My "Python 4.0" is completely fictitious and will probably never exist in exactly that form. However, it is important to realize that it could be implemented right now. With the GIL-free Python implementations (Jython, IronPython), it would even be rather straightforward to implement. For CPython, any implementation not removing the GIL would probably be too inefficient to be of practical interest.
Most of the ingredients for implementing my "Python 4.0" are well-known and have already been used in other languages or libraries:
- The "declarative concurrency" programming paradigm has been used in Oz and FlowJava, but to the best of my knowledge not in any mainstream programming language. It is explained very well in the book Concepts, Techniques, and Models of Computer Programming, by Peter van Roy and Seif Haridi, and also in the freely downloadable essay Programming paradigms for dummies. Basically, it is the functional paradigm extended with annotations that identify computations to be done in parallel. Remove those annotations, and you get plain functional programs that yield the same results. Declarative concurrency is free of deadlocks and race conditions, which I think is a critical property for any parallel programming paradigm to be considered for a high-level language such as Python. Another nice feature of declarative concurrency is that data parallelism, including nested data parallelism, is a special case that can be implemented on top of it. Data parallelism is a useful paradigm for many scientific applications.
- Futures are asynchronous tasks provided as library functions for various languages. A Python library for futures is the subject of PEP 3148; an implementation is already available.
- The importance of effect-free functions for all kinds of code transformations (automatic or not) is widely recognized. It is equally recognized that a useful program needs to have effects. The two basic approaches to dealing with this contradiction are (a) allow effects, but make it as easy as possible not to use them to encourage a mostly effect-free style and (b) design a language without effects (pure functional language) and provide a mechanism to put in effects with special annotation or syntax but clearly as an exceptional feature. The best-known language in the second category is Haskell with its use of monads for controlling effects. Most functional languages are in the first category.
- Efficient data structures for functional programs have been a subject of research for quite a while and quite a few good ones are known. It would be straightforward to replace Python's tuple implementation by something more efficient in typical functional settings, or to add an efficient immutable dictionary implementation. The standard reference is Chris Osaki's book Purely Functional Data Structures.
Futures may seem to provide most of what declarative concurrency promises, but this is not quite true. Futures are objects representing computations. They have a method that client code must call to wait for the result and retrieve it. Since waiting is an explicit operation on a standard object, it is easy to create a situation in which two futures wait for each other: a deadlock. This can only be avoided by not having futures accessible as standard objects. The language implementation must recognize futures as special and insert a wait call before any access to the value of the result. For this reason, declarative concurrency cannot be implemented as a library.
Another important condition for implementing declarative concurrency with futures is that code inside a future must be effect-free. Otherwise multiple concurrently running futures can modify the same object and create a race condition.
Probably the only truly original contribution in my "Python 4.0" scenario is the dynamically verified effect-free subset of the Python language. Most languages, even functional ones, provide no way for a compiler or a run-time system to verify that a given function is effect-free. Haskell is perhaps the only exception in having a static type system that can identify effect-free code. In Python, that is not a viable approach because everything is dynamic. But why not provide at least a run-time check for effect-free code where useful? It's still better to have a program crash with an exception saying "you did I/O in what should have been an effect-free function" than get wrong results silently.
Here is an outline of how such an approach could be implemented. Each function and method would have a flag saying "I am supposed to be effect-free." In my examples, this flag is set by the decorator @noeffects, but other ways are possible. Built-in functions would of course have that flag set correctly as well. As soon as the interpreter enters a function marked as effect-free, it goes into "functional mode" until it returns from that function again. In functional mode, it raises an exception whenever an unflagged function or method is called.
Some details to consider:
- Effect-free functions may not contain global or nonlocal statements. Probably the only way to enforce this is to have special syntax for defining effect-free functions and methods (rather than a decorator) and make those statements syntactically illegal inside.
- It would be much more useful to have a "referentially transparent" subset rather than an "effect-free" subset, but this is also much harder to implement. A referentially transparent function guarantees to return the same result for the same input arguments, but may modify mutable objects that it has created internally. For example, a typical matrix inversion function allocates an array for its result and then uses an imperative algorithm that modifies the elements of that array repeatedly before returning it. Such a function can be used as an asynchronous task without risk, but its building blocks cannot be safely run concurrently.
Finally, a comment on a minor issue. I have been asked if the "async" keyword is strictly necessary. The answer is no, but it makes the code much more readable. The main role of async is to write a function call without having it executed immediately. The same problem occurs in callbacks in GUI programming: you have to specify a function call to be executed at a later time. The usual solution is a parameter-free lambda expression, and that same trick could be used to make async a function rather than a keyword. But readability suffers a lot.
EuroSciPy 2010
There were lots of interesting presentations and announcements, and the breaks provided a much appreciated opportunity for exchanges between the participants. I won't try to provide an exhaustive summary, but rather list my personal highlights. Obviously this choice reflects my personal interests more than the quality of the presentations, and I will even list things that were not presented but that I learned about from other participants during the breaks.
Teaching
The opening keynote was given by Hans-Petter Langtangen, who is best known for his books about Python for scientific computing. His latest book is a textbook for a course on scientific programming for beginning science students, and the first part of his keynote was about this same course that he is teaching at the University of Oslo. As others have noted as well, he observed that the students have no problem at all with picking up Python and using it productively in science. The difficulties with using Python are elsewhere: it is hard to convince the university professors that Python is a good choice of programming language for such a course!
Another important aspect of his presentation was the observation that teaching scientific programming to beginning science students provides more than just training in some useful technique. Converting equations into programs and running them also provides a much better insight into the structure and applicability of the equations. Computational science thus helps to better educate future scientists.
Reproducible research
The reproducible research movement has the goal of improving the standards in computational science. At the moment, it is almost always impossible to reproduce published computational results from the information provided by the authors. Making these results reproducible requires a careful recording of what was calculated using which version of which software running on which machine, and of course making this information available along with the publication.
At EuroSciPy, Andrew Davison presented Sumatra, a Python library for tracking this information (and more) for computational procedures written in Python. The library is in an early stage, with more functionality to come, but those interested in reproducible research should check it out now and contribute to its development.
Jarrod Millman addressed the same topic in his presentation of the plans for creating a Foundation for Mathematical and Scientific Computing, whose goal is to fund development of tools and techniques that improve computational science.
NumPy and Python 3
As a couple of active contributors to the NumPy project were attending the conference, I asked about the state of the porting effort to Python 3. The good news is that the port is done and will soon be released. Those who have been waiting for NumPy to be ported before starting to port their own libraries can go to work right now: check out the NumPy Subversion repository, install, and use!
Useful maths libraries
Three new maths libraries that were presented caught my attention: Sebastian Walter's talk about algorithmic differentiation contained demos of algopy, a rather complete library for algorithmic differentiation in Python. During the Lightning talks on the last day, two apparently similar libraries for working with uncertain numbers (numbers with error bars) were shown: uncertainties, by Eric Lebigot, and upy, by Friedrich Romstedt. Both do error propagation and take correlations into account. Those of us working with experimental data or simulation results will appreciate this.
There was a lot more interesting stuff, of course, and I hope others will write more about it. I'll just point out that the slides for my own keynote about the future of Python in science are available from my Web site. And of course express my thanks to the organizing committee who invested a lot of effort to make this conference a big success!
Science and free will
The topic itself is an old one, perhaps as old as humanity. I won't go into its philosophical and religious aspects, but limit myself to the scientist's point of view: is free will compatible with scientific descriptions of our world? Perhaps even necessary for such descriptions? Or, on the contrary, in contradiction to the scientific approach? Can the scientific method be used to understand free will or show that it's a useless concept from the past?
What prompted me to write this post is a recent article by Anthony Cashmore in PNAS. In summary, Cashmore says that the majority of scientists do not believe in the existence of free will any more, and that society should draw conclusions from this, in particular concerning the judicial system, whose concept of responsibility for one's acts is based on a view of free will that the author no longer considers defendable. But don't take my word for it, read the article yourself. It's well written and covers many interesting points.
First of all, let me say that I don't agree at all with Cashmore's view that the judicial system should be reformed based on the prevailing view of today's scientists. I do believe that a modern society should take into account scientific findings, i.e. scientific hypotheses that have withstood a number of attempts at falsification. But mere beliefs of a small subpopulation, even if they are scientists, are not sufficient to justify a radical change of anything. As I will explain below, the question "do human beings possess free will" does not even deserve the label "scientific hypothesis" at this moment, because we have no idea of how we could answer it based on observation and experiment. We cannot claim either to be able to fully understand human behavior in terms of the laws of physics, which would allow us to call free will an unnecessary concept and invoke Occam's razor to get rid of it. Therefore, at this time, the existence of free will remains the subject of beliefs and scientists' beliefs are worth no more than anyone else's.
There is also a peculiar circularity to any argument about what "should" be done as a consequence of the non-existence of free will: if that hypothesis is true, nobody can decide anything! If humans have no free will, then societies don't have it either, and our judicial system is just as much a consequence of the laws of nature as my perceived decision to take coffee rather than tea for breakfast this morning.
Back to the main topic of this post: the relation between science and free will. It starts with the observation of a clear conflict. Science is about identifying regularities in the world that surrounds us, which permit the construction of detailed and testable theories. The first scientific theories were all about deterministic phenomena: given the initial state of some well-defined physical system (think of a clockwork, for example), the state of the system at any time in the future can be predicted with certainty. Later, stochastic phenomena entered the scientific world view. With stochasticity, the detailed behavior of a system is no longer predictable, but certain average properties still are. For example, we can predict how the temperature and pressure of water will change when we heat it, even though we cannot predict how each individual molecule will move. It is still a subject of debate whether stochastic elements exist in the fundamental laws of nature (quantum physics being the most popular candidate), or if they are merely a way of describing complex systems whose state we cannot analyze in detail due to insufficient resources. But scientists agree that a scientific theory may contain two forms of causality: determinism and stochasticity.
Free will, if it exists, would have to be added as a third form of causality. But it is hard to see how this could be done. The scientific method is based on identifying conditions from which exact predictions can be made. The decisions of an agent that possesses free will are by definition unpredictable, and therefore any theory about a system containing such an agent would be impossible to verify. Therefore the scientific method as we know it today cannot possibly take into consideration the existence of free will. Obviously this makes it impossible to examine the existence of free will as a scientific hypothesis. It also means that a hard-core scientist, who considers the scientific method as the only way to establish truth, has to deny the existence of free will, or else accept that some important aspects of our universe are forever inaccessible to scientific investigation.
However, there is another aspect to the relation between science and free will, which I haven't seen discussed yet anywhere: the existence of free will is in fact a requirement for the scientific method! Not as part of a system under scientific scrutiny, but as part of the scientist who runs an investigation. Testing a scientific hypothesis requires at the very least observing a specific phenomenon, but in most cases also preparing a well-defined initial state for some system that will then become the subject of observation. A scientist decides to create an experimental setup to verify some hypothesis. If the scientist were just a complex machine whose behavior is governed by the very same laws that he believes to be studying, then his carefully thought-out experiment is nothing but a particularly probable outcome of the laws of nature. We could still draw conclusions from observing it, of course, but these observations then only provide anecdotical evidence that is no more relevant than what we get from passively watching things happen around us.
In summary, our current scientific method supposes the existence of free will as an attribute of scientists, but also its absence from any system subjected to scientific scrutiny. This poses limits to what scientific investigation can yield when applied to humans.
Eclipse experiences
Last week I finally decided to retire my Eclipse installation. I didn't remove it yet, since it might be useful for some specific tasks that I have deal with rarely (such as analyzing someone else's big C++ code). But I don't use it any more for my own work. Here's a summary of my impressions of Eclipse, the good and the bad.
In terms of features, Eclipse is as impressive as it looks. Anything you might wish for in an IDE is there, either in the base distribution or in the form of a plugin - there are hundreds if not thousands of those. And contrary to what one might expect, all those features are relatively easy to get used to. The user interface is very systematic and the most frequent functions are easy to spot. In terms of user interface design, I would call Eclipse a success.
However, in terms of usability it turned out to be a disappointment. Basically there are two major issues: Eclipse is a resource hog, and it isn't as stable as I expect an IDE to be.
The two resources that Eclipse can't get enough of is CPU time and disk space. Even on a brand-new machine (and not a low-end one at that), starting Eclipse takes a good ten seconds and I get to see the Macintosh's spinning colour wheel quite often. What's worst is that the spinning wheel prevents me from typing, at unpredictable moments. This is not acceptable for an IDE. I don't care if it takes a break in background compilation now and then, but I want to be able to type when I want. Execution times for various command can also vary unpredictably. Rebuilding all my projects took about a minute typically, but once I waited for 15 minutes for no apparent reason.
In terms of disk space, Eclipse is less of a resource hog, but it creates and updates impressive amounts of data, again for no clear reason. I noticed this because I make incremental backups regularly. Just starting and quitting Eclipse, with no action in between, resulted in a few MB of files to backup again. It's not that I can't live with that, but is this really necessary?
Finally, stability. I had only a single crash in which I lost data (the most recently entered code), which is not so bad for a big application (unfortunately...). But I had Eclipse hanging very often, and displaying verbose yet unintellegible error messages almost daily. All this is not reassuring, and together with the spinning-wheel issue this is what made me abandon Eclipse in the end.
Now I am a 100% Emacs user again, with no regrets. Emacs may look old-fashioned, and have some fewer high-powered features, but it is reliable and fast.
Scientific computing needs deterministic programming paradigms
A programming paradigm defines a general approach to writing programs. It defines the concepts and abstractions in terms of which a program is expressed. For example, a programming paradigm defines how data is described, how control flow is handled, how program elements are composed, etc. Well-known programming paradigms are structured programming, object-oriented programming, and functional programming.
The implementation of a programming paradigm consists of a programming language, its runtime system, libraries, and sometimes coding conventions. Some programming languages are optimized for a specific paradigm, whereas others are explicitly designed to support multiple paradigms. Paradigms that the language designer did not have in mind can sometimes be implemented by additional conventions, libraries, or preprocessors.
The list of programming paradigms that have been proposed and/or used is already quite long (see the Wikipedia entry, for example), but the ones that are practically important and significantly distinct are much less numerous. A good overview and comparison is given in the book chapter "Programming paradigms for dummies" by Peter van Roy. I will concentrate on one aspect discussed in van Roy's text (look at section 6 in particular), which I consider of particular relevance for scientific computing: determinism.
A deterministic programming paradigm is one in which every possible program has a fully deterministic behaviour: given the same input, it executes its steps in the same order and produces the same output. This is in fact what most of us would intuitively expect from a computer program. However, there are useful programs that could not be written with this restriction. A Web server, for example, has to react to external requests which are outside of its control, and take into account resource usage (e.g. database access) and possible network errors in deciding when and in which order to process requests. This shows that there is a need for non-deterministic programming paradigms. For the vast majority of scientific applications, however, determinism is a requirement, and a programming paradigm that enforces determinism is a big help in avoiding bugs. Most scientific applications that run serially have been written using a deterministic programming paradigm, as implemented by most of the popular programming languages.
Parallel computing has changed the situation significantly. When several independent processors work together on the execution of an algorithm, fully deterministic behavior is no longer desirable, as it would imply frequent synchronizations of all processors. The precise order in which independent operations are executed is typically left unspecified by a program. What matters is that the output of the program is determined only by the input. As long as this is guaranteed, it is acceptable and even desirable to let compilers and run-time systems optimize the scheduling of individual subtasks. In Peter van Roy's classification, this distinction is called "observable" vs. "non-observable" non-determinism. A programming paradigm for scientific computing should permit non-determinism, but should exclude observable non-determinism. While observable non-determinism makes the implementation of certain programs (such as Web servers) possible, it also opens the way to bugs that are particularly nasty to track down: deadlocks, race conditions, results that change with the number of processors or when moving from one parallel machine to another one.
Unfortunately, two of the most popular programming paradigms for parallel scientific applications do allow observable non-determinism: message passing, as implemented by the MPI library, and multi-threading. Those who have used either one have probably suffered the consequences. The problem is thus well known, but the solutions aren't. Fortunately, they do exist: there are several programming paradigms that encapsulate non-determinism in such a way that it cannot influence the results of a program. One of them is widely known and used: OpenMP, which is a layer above multi-threading that guarantees deterministic results. However, OpenMP is limited to shared-memory multiprocessor machines.
For the at least as important category of distributed-memory parallel machines, there are also programming paradigms that don't have the non-deterministic features of message passing, and they are typically implemented as a layer above MPI. One example is the BSP model, which I have presented in an article in the magazine Computing in Science and Engineering. Another example is the parallel skeletons model, presented by Joël Falcou in the same magazine. Unfortunately, these paradigms are little known and not well supported by programming tools. As a consequence, most scientific applications for distributed-memory machines are written using the message passing paradigm.
Finally, a pair of programming paradigms discussed by van Roy deserves special mention, because it might well become important in scientific computing in the near future: functional programming and declarative concurrency. I have written about functional programming earlier; its main advantage is the possibility to apply mathematical reasoning and automatic transformations to program code, leading to better code (in the sense of correctness) and to better optimization techniques. Declarative concurrency is functional programming plus annotations for parallelization. The nice feature is that these annotations (not very different in principle from OpenMP pragmas) don't change the result of the program, they only influence its performance on a parallel machine. Starting from a correct functional program, it is thus possible to obtain an equivalent parallel one by automatic or manual (but automatically verified) transformations that is guaranteed to behave identically except for performance. Correctness and performance can thus be separated, which should be a big help in writing correct and efficient parallel programs. I say "should" because this approach hasn't been used very much, and isn't supported yet by any mainstream programming tools. This may change in a couple of years, so you might want to watch out for developments in this area.
Tags: computational science, computer-aided research, emacs, mmtk, mobile computing, programming, proteins, python, rants, reproducible research, science, scientific computing, scientific software, social networks, software, source code repositories, sustainable software
By month: 2024-10, 2023-11, 2023-10, 2022-08, 2021-06, 2021-01, 2020-12, 2020-11, 2020-07, 2020-05, 2020-04, 2020-02, 2019-12, 2019-11, 2019-10, 2019-05, 2019-04, 2019-02, 2018-12, 2018-10, 2018-07, 2018-05, 2018-04, 2018-03, 2017-12, 2017-11, 2017-09, 2017-05, 2017-04, 2017-01, 2016-05, 2016-03, 2016-01, 2015-12, 2015-11, 2015-09, 2015-07, 2015-06, 2015-04, 2015-01, 2014-12, 2014-09, 2014-08, 2014-07, 2014-05, 2014-01, 2013-11, 2013-09, 2013-08, 2013-06, 2013-05, 2013-04, 2012-11, 2012-09, 2012-05, 2012-04, 2012-03, 2012-02, 2011-11, 2011-08, 2011-06, 2011-05, 2011-01, 2010-07, 2010-01, 2009-09, 2009-08, 2009-06, 2009-05, 2009-04